室內裝修已成為一項獨立的產業,大大小小的裝飾裝璜公司像雨後春筍,遍地林立。不少裝璜公司,以新風格、新材料、新工藝給室內建築裝修帶來新面貌,達到了新水平。
在很多情況下,室內裝修有一定的聲學要求。不僅是各類劇院、體育場館和歌舞廳以及與聲學有關的錄音室、演播室等專業用房本身有一定的聲學技術指標,而且凡是公共場所,一般都需要傳播語言或音樂,即使是家庭用房現在也需要有良好的音樂欣賞環境。所以室內裝修工程必須重視聲學要求。如果忽視這一點,極有可能造成不良後果。例如有一水上健身娛樂場所,地面基本上都是水面,上空是一大玻璃圓穹項,由於沒有聲學設計,致使廳內混響時間特別長,當有文娛表演時連報幕的話也聽不清。再如有的走廓或門廳,做得富麗堂皇、金碧輝煌,但即使是普通的談話聲或背景音樂,也在空間內久傳不衰,形成令人煩惱的干擾噪聲。
造成音質差的主要原因是沒有科學的聲學設計。不少裝飾工程公司本身沒有合格的聲學設計人員;有的一開始邀請聲學專家做設計,以後自以為有了 “ 經驗 ” ,便大膽地把設計也承包了;有的是東抄西襲,以為找到了人家的奧秘,你做軟包,我也搞軟包,你用穿孔板,我也做穿孔板,實際上沒有掌握真正的聲學要求;也不排除有的工程技術人員懂得一些聲學知識,但並不精於室內聲學的原理和實踐,做出了並不合格的聲學裝修設計。
1.吸聲與隔聲的基本概念
首先要明確吸聲與隔聲是完全不同的兩個聲學概念。吸聲是指聲波傳播到某一邊界面時,一部分聲能被邊界面反射(或散射),一部分聲能被邊界面吸收(這裡不考慮在媒質中傳播時被媒質的吸收),這包括聲波在邊界材料內轉化為熱能被消耗掉或是轉化為振動能沿邊界構造傳遞轉移,或是直接透射到邊界另一面空間。對於入射聲波來說,除了反射到原來空間的反射(散射)聲能外,其餘能量都被看作被邊界面吸收。在一定面積上被吸收的聲能與入射聲能之比稱為該邊界面的吸聲係數。例如室內聲波從開着的窗戶傳到室外,則開窗面積可近似地認為百分之百地 “ 吸收”了室內傳來的聲波,吸聲係數為1。當然,我們所要考慮的吸聲材料,主要不是*開口面積的吸聲,而要*材料本身的聲學特性來吸收聲波。
對於兩個空間中間的界面隔層來說,當聲波從一室入射到界面上時,聲波激發隔層的振動,以振動向另一面空間輻射聲波,此為透射聲波。通過一定面積的透射聲波能量與入射聲波能量之比稱透射係數。對於開啟的窗戶,透射係數可近似為1(吸聲係數也為1),其隔聲效果為0,即隔聲量為0db。對於又重又厚的磚牆或厚鋼板,單位面積質量大,聲波入射時只能激發起此隔層的微小振動,使對另一空間輻射的聲波能量(透射聲能)很小,所以隔聲量大,隔聲效果好。但對於原來空間而言,絕大部分能量被反射,所以吸聲係數很小。
對於單一材料(不是專門設計的複合材料)來說,吸聲能力與隔聲效果往往是不能兼顧的。如上述磚牆或鋼板可以作為好的隔聲材料,但吸聲效果極差;反過來,如果拿吸聲性能好的材料(如玻璃棉)做隔聲材料,即使聲波透過該材料時聲能被吸收99%(這是很難達到的),只有1%的聲能傳播到另一空間,則此材料的隔聲量也只有20db,並非好的隔聲材料。有人把吸聲材料誤稱為 “ 隔音材料 ” 是不對的。如果有人介紹某種單一材料吸聲好隔聲也好,那他不是不懂就是在騙人了。
2.吸聲材料
吸聲材料是指吸聲係數比較大的建築裝修材料。如果材料內部有很多互相連通的細微空隙,由空隙形成的空氣通道,可模擬為由固體框架間形成許多細管或毛細管組成的管道構造。當聲波傳入時,因細管中*近管壁與管中間的聲波振動速度不同,由媒質間速度差引起的內摩擦,使聲波振動能量轉化為熱能而被吸收。好的吸聲材料多為纖維性材料,稱多孔性吸聲材料,如玻璃棉、岩棉、礦碴棉、棉麻和人造纖維棉、特製的金屬纖維棉等等,也包括空隙連通的泡沫塑料之類。吸聲性能與材料的纖維空隙結構有關,如纖維的粗細(微米至幾十微米間為好)和材料密度(決定纖維之間 “ 毛細管 ” 的等效直徑)、材料內空氣容積與材料體積之比(稱空隙率,玻璃棉的空隙率在90%以上)、材料內空隙的形狀結構等。從使用的角度,可以不管吸聲的機理,只要查閱材料吸聲係數的實驗結果即可。當然在選用時還要注意材料的防潮、防火以及可裝飾性等其他要求。
多孔性吸聲材料有一個基本吸聲特性,即低頻吸聲差,高頻吸聲好。 當材料厚度增加時,可以改善低頻的吸聲特性。厚度增加一倍,低頻吸聲係數的頻率特性向低頻移一個倍頻程。但並非可以一直增加厚度來提高低頻吸聲係數的,因為聲波在材料的空隙中傳播時有阻尼,使增加厚度來改善低頻吸聲受到限制。不同材料有不同的有效厚度。像玻璃棉一類好的吸聲材料,一般用5cm左右的厚度,很少用到10cm以上。而像纖維板一類較微密的材料,其材料纖維間空隙非常小,聲波傳播的阻尼非常大,不僅吸聲係數小,而且有效厚度也非常小。
一般平板狀吸聲材料的低頻吸聲性能差是普遍規律。一種改進的方法是將整塊的吸聲材料切割成尖劈形狀,見圖2,當聲波傳播到尖劈狀材料時,從尖部到基部,空氣與材料的比例逐漸變化,也即聲阻抗逐漸變化,聲波傳播就超出平板狀材料有效厚度的限制,達到材料的基部,從而可改善低頻吸聲性能。
3.共振吸聲結構
利用不同的共振吸聲機理,設計各種類型的共振吸聲結構,使吸收峰值選擇在所需頻率位置,滿足不同頻率吸聲量的要求,特別是解決低頻吸聲量不足的問題。
3.1 薄層多孔性吸聲材料的共振吸聲
薄層多孔性吸聲材料也包括各種透氣的織物,如棉、麻、絲、絨、人造纖維等織物。將材料掛在剛性面前距離d處,則當
d=1/4(2n+1) λ (1)
時, λ 是空氣中聲波波長,n為正整數,織物處於剛性面前駐波的聲壓波節位置,那裡聲波的質點振動速度最大,使在織物中消耗最大的聲能,形成共振吸聲。在(1)式中n分別等於0、1、2……時,對應的共振吸聲頻率fn為:
fn=(2n+1)/4.co/d (2)
式中co為空氣中聲波傳播速度,一般以340m/s計算。例如,當織物與剛性壁距離為34cm時,n=0對應的最低共振頻率f0=250hz,n=1對應的f1=750hz,n=2對應的f2=1250hz……。其共振吸聲的頻率特性見圖3b。吸聲峰值與織物性能有關,一般都比較大,但共振吸聲峰的寬度不大,在實際使用中往往將帘子增大折皺懸挂,即連續改變織物與剛性面的距離,並在不同距離處懸挂不止一層織物,以改善吸聲頻率特性。此外,將厚度為d的玻璃棉一類材料離剛性面d處安裝,則(1)式中的d→變成為d→(d+t)連續變化,即有許多共振吸聲頻率,而最低共振頻率為f0=c0/4(d+t)。
3.2 薄膜共振吸聲結構
如果剛性面前d處有一層不透氣的膜,膜的單位面積質量為m,則膜與厚度為d的空氣層構成質量 —— 彈簧的共振系統,其共振頻率為:
fr=co/2 π √ ρ o/md ( 3)
式中 ρo 為空氣密度。例如在 “ 軟包 ” 外表面蒙上不透氣的膜,則包在裡面的多孔性吸聲材料就不能發揮原有的吸聲功能,而首先是膜的共振吸聲並通過膜振動傳入材料內的吸聲作用,而此膜振動又受到材料的阻尼抑制,吸聲效能受到限制。如果蒙皮用人造革一類質量較大的材料,如有的劇院中的座椅,那種吸聲性能就更差了。
3.3 薄板共振吸聲結構
薄板是兩維的振動系統,其共振頻率除了與板的物理常數和幾何尺寸有關外,還和它的邊緣固定狀況有關。如果一塊邊長為la、lb的矩形板,厚度為h,四邊都被牢固地鉗定,它的共振頻率fm,n為:
fm,n= π/2[eh2/12ρ(1-σ2)]1/2.[m2/1n2+n2/1b2]1/2 (4)
式中e、 ρ 、 σ 分別為板的楊氏模量、密度和泊松比,m、n為正整數。當n=0、m=1時,得到最低的共振頻率(設la>lb)。如果板為玻璃,將玻璃的物理常數代入:
fm,n=2.5×10h3(m2/1n2+n2/1b2)1/2 (5)
式中長度單位為米。例如長50cm、寬40cm、厚4mm的玻璃窗,四邊固定,則(m,n)為(1,0)的最低共振頻率為20hz,(m,n)為(0,1)的共振頻率為25hz,(m,n)為(1,1)的共振頻率為32hz。隨着(m,n)漸次增大,共振頻率越來越大(間隔也越來越密),在這些頻率上有較大的聲吸收和聲透射。
在室內裝修中經常用到板材,它們都有一定的共振吸聲效應,其共振頻率大體上如(4)式所示,與板的幾何尺寸和物理常數有關,同時與邊緣固定狀況有關,例如釘子釘多少,釘緊的程度,是否用膠固定等等。因此這類共振吸聲往往不被主動採用在設計方案內,只有有經驗的設計師才謹慎地使用。但有一點非常重要,即當用薄板作表面裝飾處理時,為避免共振頻率過多的一致,在設計和施工中注意將固定薄板的木筋之間給予不同的間距尺寸,使共振頻率得以分散。對於不希望有薄板共振吸聲作用的聲學空間,表面處理就採用貼實的厚板。
3.4 穿孔板共振吸聲結構
經常利用穿孔板共振吸聲結構來補足低頻所需的吸聲量。穿孔板吸聲結構如圖6a所示,板厚t,離剛性面距離d,如板上鑽圓孔(也可開狹縫),孔的半徑為a,穿孔面積占板面積的比率(穿孔率)為p,則此穿孔共振結構的共振頻率fr為
fr=co/2 π √ p/(t+16a)d (6)
式中表示共振頻率有好幾個參數可以調節,如板厚t,孔的半徑a,穿孔率p以及板與剛性面的距離d。現在市場上有做好的不同穿孔率的穿孔板,可以選擇不同的穿孔率和改變板與剛性面間距離d,來得到所需的共振頻率。
需要注意的是穿孔板共振吸聲峰的形狀,它與共振結構系統的阻尼有關。阻尼小時,共振峰較尖銳,阻尼大時共振峰較為平緩。一般寧可選擇較為平緩的吸聲特性,以避免過強的吸聲頻率選擇性。板厚、孔徑小,阻尼較大。微穿孔板的穿孔直徑為0?8~1mm左右,所以阻尼大,吸收峰較為平緩,但因易積灰和不耐腐蝕,所以不少地方不宜採用。
一般穿孔板厚度不大於5mm,穿孔直徑在6~10mm左右,這種情況下阻尼嫌小。要增加共振結構的阻尼,需要在穿孔附近增加吸聲材料。參看圖6c,當聲波傳播經過穿孔時, “ 聲線 ” 像流線那樣在孔中和孔附近比較密集,那裡的 “ 流速 ” 大,即聲波的質點振動速度大,吸聲材料產生最大的阻尼作用。我們很難將吸聲材料填塞到一個個孔中,所以往往在板的前面或後面貼一層吸聲材料(厚度為一個孔直徑時效率最高)來增加共振吸聲系統的阻尼,使吸收峰比較平緩。吸聲材料在穿孔板後面時,只起到共振吸聲的阻尼作用;若放在穿孔板前面,則同時兼有多孔性吸聲材料的吸聲功能。穿孔率p大於0?2時,一般不是共振吸聲結構,僅僅作為多孔性吸聲材料的 “ 護面板 ” 。
4.隔聲材料
不透氣的固體材料,對於空氣中傳播的聲波都有隔聲效果,隔聲效果的好壞最根本的一點是取決於材料單位面積的質量。
一個面積非常大的隔層,其單位面積質量為ms,當聲波從左面垂直入射時,激發隔層作整體振動,此振動再向右面空間輻射聲波。以單位面積考慮,透射到右面空間的聲能與入射到隔層上的聲能之比稱透射係數 τ 。定義無限大隔層材料的傳遞損失(也稱透射損失)tl:
tl=101g1/ г (7)
上述簡單情況下可計算得到傳遞損失近似為:
tl=20lg ω ms/2 ρ oco (db) (8)
式中 ω=2πf 為圓頻率, ρ0 、c0為空氣的密度和聲波傳播速度。tl的大小表示材料的隔聲能力。
(8)式的一個重要特點,即材料單位面積質量增加一倍,則傳遞損失增加6db。這一隔聲的基本規律稱 “ 質量定律 ” ,也就是說隔聲重量。所以像磚牆、水泥牆或厚鋼板、鉛板等單位面積質量大的材料,隔聲效果都比較好。
(8)式也表明,單層隔聲的高頻隔聲好,低頻差。頻率每提高一倍,傳遞損失就增加6db。
需要說明的是:傳遞損失tl是隔層面積為無限大時的理論 “ 隔聲量 ” ,作為一垛牆或樓板,它都有邊緣與其它建築構件連接,這時的 “ 隔聲量 ” 與(7)式所表示的傳遞損失有差別。既有因邊緣接近於固定而增大隔聲能力,也有作為邊緣固定的板振動有一定的共振頻率,使某些共振頻率點上隔聲效果降低的現象。而當作為兩相鄰房間之間的隔牆或樓板,因為兩室之間有多條傳聲(或振動)通道,這兩個房間之間的隔聲量(只能稱聲級差)更不能以該隔層的傳遞損失來代表。
隔層材料在物理上有一定彈性,當聲波入射時便激發振動在隔層內傳播。當聲波不是垂直入射,而是與隔層呈一角度 θ 入射時,聲波波前依次到達隔層表面,而先到隔層的聲波激發隔層內彎曲振動波沿隔層橫向傳播,若彎曲波傳播速度與空氣中聲波漸次到達隔層表面的行進速度一致時,聲波便加強彎曲波的振動,這一現象稱吻合效應。這時彎曲波振動的輻度特別大,並向另一面空氣中輻射聲波的能量也特別大,從而降低隔聲效果。產生吻合效應的頻率fc為:
fc=co2/2 π sin2 θ [12 ρ (1- σ 2)/eh2]1/2 (9)
式中 ρ 、 σ 、e分別為隔層材料的密度、泊松比和楊氏模量,h是隔層厚度。任意吻合頻率fc與聲波入射角 θ 有關。在大多數房間中的聲場都接近於混響聲場,到達隔層的入射角從0°到90°都有可能,因此吻合頻率出現在從掠入射( θ=90°) 的fc0開始的一個頻率範圍,也就是說吻合效應使某一頻率範圍的隔聲效果變差。一般這一頻率範圍發生在中高頻。從質量定律知道,中高頻隔聲量較大,除了內阻尼很小的金屬板外,因吻合效應使中高頻隔聲量降低的現象,不會引起很大的麻煩。
5.雙層隔聲結構
根據質量定律,頻率降低一半,傳遞損失要降6db;而要提高隔聲效果時,質量增加一倍,傳遞損失增加6db。在這一定律支配下,若要顯著地提高隔聲能力,單*增加隔層的質量,例如增加牆的厚度,顯然不能行之有效,有時甚至是不可能的,如航空器上的隔聲結構。這時解決的途徑主要是採用雙層以至多層隔聲結構。
雙層隔聲結構模型見圖8,單位面積質量分別為m1、m2,中間空氣層厚度為l。雙層結構的傳遞損失可以進行理論計算,結果比較複雜,在不同頻率範圍可以得到不同的簡化表示,這裡只作定性介紹。
兩個隔層與中間空氣層組成一個共振系統,共振頻率為fr(m的單位為kg/m2,l的單位為m):
fr=60/√m1m2l/(m1+m2) (10)
在此共振頻率附近,隔聲效果大為降低。不過對於重牆來說,此頻率已低於可聞頻率範圍。例如m1為半磚牆250kg/m2,m2為一磚牆500kg/m2,空氣層厚度0?5m,這時共振頻率在7hz左右。
對於輕結構雙層隔聲,共振頻率可能落在可聞頻率範圍內,例如兩層鋁板分別為5?2kg/m2和2?6kg/m2,中間空氣層5cm,可計算出共振頻率約為200hz。這時應在兩板間填塞阻尼材料,以抑制板的振動。一般若用薄鋼板做雙層隔聲結構時,鋼板上都塗好阻尼層來抑制鋼板的振動。
在共振頻率fr以下,雙層隔聲的效果如同沒有空氣層的一層(m1+m2)的隔聲效果;在fr以上一段頻率範圍,雙層隔聲效果接近於兩個單層隔聲的傳遞損失之和;在更高的頻率,當空氣層厚度l為四分之一波長的奇數倍時,雙層隔聲效果相當於兩個單層的傳遞損失之和再加6db,l為波長的偶數倍時,雙層隔聲效果相當於兩個單層合在一起的傳遞損失再增加6db,在其它頻率,傳聲損失在這兩個值之間。所以在總體上,當頻率大於fr時,雙層隔聲結構顯著地提高了隔聲效能。
一般雙層隔聲結構的兩層,不用相同厚度的同一種材料,以避免這兩層出現相同的吻合頻率。
在設計和施工中要特別注意,兩層之間不能有剛性連接。破壞了固體 —— 空氣 —— 固體的雙層結構,把兩層固體隔層由剛性構件相連,使兩個隔層的振動連在一起,隔聲量便大為降低。尤其是雙層輕結構隔聲,相互之間必須相互支撐或連接時,一定要用彈性構件支撐或懸吊,同時注意需要分割的兩個空間之間,不能有縫或孔相通。 “ 漏氣 ” 就要漏聲,這是隔聲的實際問題。